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Controllability of multi-agent systems

 Assigning the roles of leaders and followers




Diffusively coupled multi-agent systems

The state of each agent is a scalar: Z;

Agents’ dynamics are determined by diffusive couplings
zi(t) = ) (x;(t) —x4(1))
VIS
Overall dynamics \ set of neighbors: time-invariant, symmetric
#(t) = —La(t)

Fixed undirected neighbor relationship graphs G = (V, &)
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‘ D = diag(1,2,3,2,1,3)



| eaders vs. followers

Choose m leaders: V; = {l1,l2,...,l;,} CV

apply one control input at each leader u = |u; .. .um]T

Define M =R™ ™ where . _ [ 1 ifi=1
7 1 0 otherwise

Overall dynamics
2(t) = —La(t) +Mu
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Leaders vs. followers
Choose m leaders: V; = {l1,l2,...,l;,} CV

apply one control input at each leader u = |u; .. .um]T

Define M =R™ ™ where ,. _ [ 1 ifi=1
7 1 0 otherwise

Overall dynamics

t(t) = —Lx(t) +Mu

Controllability <— Graph topology



Graph partitions

cell : collection of vertices C

partition : collection of mutually disjoint cells 7 = {C1,Cs,...,Cx}

discrete partition : a partition of singleton cells

equitable partition : a partition ™ = {C1,C2,...,Cr} such that each
node in C; has the same number of neighbors in C;
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Graph partitions
cell : collection of vertices C

partition : collection of mutually disjoint cells 7 = {C1,Cso,...,Cx}

discrete partition : a partition of singleton cells

equitable partition : a partition ™ = {C1,Cs,...,Cr} such that each
node in C; has the same number of neighbors in C;

almost equitable partition : a partition T = {Cl, Ca,. .. ,Ck} such
that each node in C; has the same number of neighbors in C

J
forall: # 7, 1,7 € {1,2,...,k}

( almost ) equitable partition relative to v : if it is a (almost) equitable
partition and {v} is its cell

distance partition relative to v : if its cells consist of

{u € V|dist(u,v) = i}



Pitfalls

Some elegant conclusions can be drawn using combinatorial characteristics
eg. necessary condition for controllability using graph symmetry

A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt. Controllability of multi-agent
systems from a graph theoretic perspective. SIAM Journal on Control and
Optimization, 48:162-186, 2009

Sometimes the difficulty in such characterization is overlooked
eg. wrong sufficient conditions using almost equitable partitions

S. Martini, M. Egerstedt, and A. Bicchi. Controllability of multi-agent systems
using relaxed equitable partitions. International Journal of Systems,
Control, and Communications, 2:100-121, 2010



Lattice of partitions
II : the set of all partitions for a given graph

T < Mg <= every cell of 71 is a subset of a cell of 79
€.g. {{17 2}7 {3}7 {4}7 {5}} S {{17 27 3}7 {47 5}}
T < Ty & C&I‘d(ﬂ'l) > C&I‘d(ﬂ'z)

II is a complete lattice, namely every subset of ] has an infimum
and supremum within I1

Notation: for II' C IT, inf(IT") and sup(II)



Characteristic Matrix
Let 7 ={C1,Ca,...,Cx} Dbe apartition.

Characteristic matrix P(7) of 7

pz’j:{ /

0 otherwise

m={{1,2},{3,4,5},{6}}

O = = -0 O
_O O O O O

OO OO




Facts

IIgp C llagp
U U
Ipp(v) C Hagp(v)

m <7mp(v) forall v €V andforall m € Ilapp(v)
T isan EP < imP(7) is A-invariant
T isan AEP< imP(7) is L-invariant
imP(m) NimP(my) = imP(sup{mi,m2})
imP(m) +imP(my) = imP(inf{mr,m2})
Use the following to denote the maximals of the corresponding partitions

%k % % %k
TEp, TEP(V); TAEP; TAEP(v)






Examples

.\

hhhhhh
-

:
[
o o'

Distance partition 7p(1)
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Equitable partition with respectto 1



Controllability Analysis
r = —Lx + Mu
JC :the controllable subspace

Fact : KC is the smallest L-invariant subspace that contains imM\/

K = ) K

vEV]



Single-leader case

card(mp(v))
K(v)

dim(K(v))

imP(rapp(v))

61 A

card(mp(v)) < dim(K(v)) < dim (imP(WZEP)(fU)>
5=5<6




Single-leader case

dim(K(v))

imP(mypp(v))

card(mp(v))
K(v)

.

card(mp(v)) < dim(K(v)) < dim (imP(WZEP)(v)>

5=05<6 3<HH




Single-leader case

dim(K(v))

imP (1 gp(v))

card(mp(v))
K(v)

B

card(mp(v)) < dim(K(v)) < dim (imP(WZEP)(v))

5=5<6 3<5<6 3< 6=




Single-leader case

dim(K(v))

imP(7pp(v))

card(mp(v))
K(v)

e

card(mp(v)) < dim(K(v)) < dim (imP(szP)(v)>
5=5<6 3<5<6 3<6=6

Sol G

IC # imP(x) for any w € II!




Distance-regular graphs

diam(G) = max{dist(u, v)|u,v € V}
G is distance-regular if
for any vertices u and v and integers 7,5 = 0,1,...,diam(G),
the number of vertices at distance i from u and distance j from v

depends only on I, | and the distance between u and v,

independently of the choice of u and v.

1 =1and 7 =2



Under distance regularity

General graph

Ilgp Cllagp

Tp = TAEP

dim(KC(v)) > card(mp(v))

K(v) CimP(mygp(v))

Distance regular graph
llgp = lagp
mp(v) =71 gp(v) forallv e V

dim((K(v)) = diam(G) + 1

K(v) =imP (1% gp(v))

If controllable, then dm >n — 1



Leader selection

1. Take w € V

2. Let 7TD<’LU) — {{’LU},Cl,CQ, “o ,Cd}
3. Take w; € C; fort =1,2,...,d
4. Let Vf — {wl,wQ, e ,wd}

5. Define Vl =) \ Vf




Quick look at the proof

K = ) K@)

vEV]

= Z imP(my5p(v))

vEV]

= imP ( inf WZEP(U))

vEV]

inf 7’ pp(v) is discrete!
veEV]



How many leaders needed?

1. Take w € V

2. Let 7TD<’LU) — {{’LU},Cl,CQ, . o ,Cd}
3. Take w,;C; for 1 =1,2,...,d
4. Let Vf — {wl,wQ, e ,wd}

5. Define Vl =) \ Vf




Complete and cycle graphs
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diam = 1, at least n — 1 leaders needed

diam = LgJ , at least 2 leaders needed



Concluding Remarks

Controllability problem for multi-agent systems can
be studied using graphs

Tight bounds for controllability subspaces for
systems with general graphs and distance regular
graphs

Future work
Better bounds on the least number of leaders for
controllability
More complicated dynamics
Time-dependent graph topology

---- The End ----




