
Ming Cao

University of Groningen
The Netherlands

Controllability of Diffusively Coupled 
Multi-Agent Systems

Joint work with Shuo Zhang and Kanat Camlibel



Outline
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controllability

• Graph partitions 

• Controllability of systems with general graphs and 
distance regular graphs
• Single-leader case
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• Leader selection



Controllability of multi-agent systems

• Assigning the roles of leaders and followers



Diffusively coupled multi-agent systems

The state of each agent is a scalar: xi

Agents’ dynamics are determined by diffusive couplings

ẋi(t) =
X
j∈Ni

(xj(t)− xi(t))

Overall dynamics

ẋ(t) = −Lx(t)
set of neighbors: time-invariant, symmetric 

Fixed undirected neighbor relationship graphs
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A =

⎡⎢⎢⎢⎢⎢⎣
0 0 1 0 0 0
0 0 1 1 0 0
1 1 0 0 0 1
0 1 0 0 0 1
0 0 0 0 0 1
0 0 1 1 1 0

⎤⎥⎥⎥⎥⎥⎦ L =

⎡⎢⎢⎢⎢⎢⎣
1 0 −1 0 0 0
0 2 −1 −1 0 0
−1 −1 3 0 0 −1
0 −1 0 2 0 −1
0 0 0 0 1 −1
0 0 −1 −1 −1 3

⎤⎥⎥⎥⎥⎥⎦
D = diag(1, 2, 3, 2, 1, 3)

G = (V , E)
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Leaders vs. followers

Choose m leaders: Vl = {l1, l2, . . . , lm} ⊆ V

Overall dynamics

ẋ(t) = −Lx(t)

apply one control input at each leader

Define M = Rn×m where Mij =

½
1 if i = lj
0 otherwise

+Mu

u = [u1 . . . um]
T

Example
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ẋ = −

⎡⎢⎢⎢⎢⎢⎣
1 0 −1 0 0 0
2 0 −1 −1 0 0
−1 −1 3 0 0 −1
0 −1 0 2 0 −1
0 0 0 0 1 −1
0 0 −1 −1 −1 3

⎤⎥⎥⎥⎥⎥⎦x+
⎡⎢⎢⎢⎢⎢⎣
0 0
0 0
0 0
0 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎦ u



Leaders vs. followers

Choose m leaders: Vl = {l1, l2, . . . , lm} ⊆ V

Overall dynamics

ẋ(t) = −Lx(t)

apply one control input at each leader
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1 if i = lj
0 otherwise

+Mu
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Controllability ⇐⇒ Graph topology
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Graph partitions

cell : collection of vertices C
partition : collection of mutually disjoint cells π = {C1, C2, . . . , Ck}
discrete partition : a partition of singleton cells

equitable partition : a partition                                          such that each 
node in        has the same number of neighbors in 

π = {C1, C2, . . . , Ck}
Ci Cj
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Graph partitions

cell : collection of vertices C
partition : collection of mutually disjoint cells π = {C1, C2, . . . , Ck}
discrete partition : a partition of singleton cells

equitable partition : a partition                                          such that each 
node in        has the same number of neighbors in 

π = {C1, C2, . . . , Ck}
Ci Cj

almost equitable partition : a partition                                          such 
that each node in        has the same number of neighbors in 

π = {C1, C2, . . . , Ck}
Ci Cj

for all i 6= j, i, j ∈ {1, 2, . . . , k}
( almost ) equitable partition relative to v : if it is a (almost) equitable 

partition and {v} is its cell

distance partition relative to v : if its cells consist of 
{u ∈ V|dist(u, v) = i}



Pitfalls

Some elegant conclusions can be drawn using combinatorial characteristics 

eg. necessary condition for controllability using graph symmetry 

A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt. Controllability of multi-agent 
systems from a graph theoretic perspective. SIAM Journal on Control and 
Optimization, 48:162-186, 2009

Sometimes the difficulty in such characterization is overlooked
eg. wrong sufficient conditions using almost equitable partitions

S. Martini, M. Egerstedt, and A. Bicchi. Controllability of multi-agent systems 
using relaxed equitable partitions. International Journal of Systems, 
Control, and Communications, 2:100-121, 2010



Lattice of partitions

: the set of all partitions for a given graph Π

every cell of        is a subset of a cell of π1 ≤ π2 ⇐⇒
e.g.

π1 ≤ π2 ⇔ card(π1) ≥ card(π2)

Π

Π0 ⊆ Π inf(Π0)Notation: for                ,                     and 

is a complete lattice, namely every subset of      has an infimum
and supremum within

π1 π2

{{1, 2}, {3}, {4}, {5}} ≤ {{1, 2, 3}, {4, 5}}

Π
Π

sup(Π0)



Characteristic Matrix

Let                                             be a partition.π = {C1, C2, . . . , Ck}
Characteristic matrix              of

π = {{1, 2}, {3, 4, 5}, {6}}

π

pij =

½
1 if j ∈ Ci
0 otherwise

P (π) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

P (π)
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Facts

ΠEP ⊆ ΠAEP

ΠEP (v) ⊆ ΠAEP (v)

for all                and for all

⊆ ⊆

π ≤ πD(v) v ∈ V π ∈ ΠAEP (v)
is an  EP                        is A-invariantπ ⇔ imP (π)

is an AEP                       is L-invariantπ ⇔ imP (π)

imP (π1) ∩ imP (π2) = imP (sup{π1,π2})
imP (π1) + imP (π2) = imP (inf{π1,π2})

π∗EP ,π
∗
EP (v),π

∗
AEP ,π

∗
AEP (v)

Use the following to denote the maximals of the corresponding partitions
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Distance partition πD(1)
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Equitable partition with respect to 1



Controllability Analysis

ẋ = −Lx + Mu

K : the controllable subspace

Fact :       is the smallest L-invariant subspace that contains K imM

K =
X
v∈Vl

K(v)



card(πD(v)) ≤ dim(K(v))
K(v) ⊆ imP (πAEP (v))
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Single-leader case

4

card(πD(v)) ≤ dim(K(v)) ≤ dim
µ
imP(π∗AEP )(v)

¶
5 = 5 < 6
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K 6= imP (π) for any π ∈ Π!

card(πD(v)) ≤ dim(K(v)) ≤ dim
µ
imP(π∗AEP )(v)

¶



Distance-regular graphs

i, j = 0, 1, . . . , diam(G)

G

diam(G) = max{dist(u, v)|u, v ∈ V}
is distance-regular if 

for any vertices u and v and integers                                           ,

the number of vertices at distance i from u and distance j from v

depends only on i, j and the distance between u and v,

independently of the choice of u and v.

2

65

3

1

4

2

65

3

1

4

2

65

3

1

4

i = 1 and j = 2



Under distance regularity

ΠEP = ΠAEP

πD(v) = π∗AEP (v) for all v ∈ V

dim(K(v)) ≥ card(πD(v)) dim((K(v)) = diam(G) + 1

General graph Distance regular graph 

ΠEP ⊆ ΠAEP

πD ≥ πAEP

K(v) ⊆ imP (π∗AEP (v)) K(v) = imP (π∗AEP (v))

dm ≥ n− 1If controllable, then 



Leader selection

1. Take w ∈ V
2. Let πD(w) = {{w}, C1, C2, . . . , Cd}

3. Take wi ∈ Ci for i = 1, 2, . . . , d

4. Let Vf = {w1, w2, . . . , wd}

5. Define Vl = V \ Vf

K =
X
v∈Vl

K(v) = Rn



Quick look at the proof

K =
X
v∈Vl

K(v)

=
X
v∈Vl

imP (π∗AEP (v))

= imP

µ
inf
v∈Vl

π∗AEP (v)
¶

inf
v∈Vl

π∗AEP (v) is discrete!



cardVl = n− diam(G)

How many leaders needed?

1. Take w ∈ V
2. Let πD(w) = {{w}, C1, C2, . . . , Cd}

3. Take wiCi for i = 1, 2, . . . , d

4. Let Vf = {w1, w2, . . . , wd}

5. Define Vl = V \ Vf



Complete and cycle graphs

diam = 1, at least n− 1 leaders needed
diam =

jn
2

k
, at least 2 leaders needed



Concluding Remarks
• Controllability problem for multi-agent systems can 

be studied using graphs

• Tight bounds for controllability subspaces for 
systems with general graphs and distance regular 
graphs

• Future work
• Better bounds on the least number of leaders for 

controllability
• More complicated dynamics
• Time-dependent graph topology 

---- The End ----


